Introduction

Effective calf rearing is a key part of ensuring the economic success of many livestock units; in order to get it right it is important to have a structured, goal orientated approach, which ensures consistency across all areas. In both the beef and the dairy sectors, research has shown that the way an animal is managed and how it performs during its first few months of life will affect how well it performs later on.

This guide provides practical tips on how to best approach calf health and management, starting with colostrum feeding, which is an essential step in the management of any calf, then going through other important aspects of calf husbandry. In the final sections we look at the key diseases, which affect calves: pneumonia and scours.
Colostrum

It has been suggested that up to 50% of calves born in the UK do not receive a sufficient quantity of good quality colostrum. Achieving early and adequate intake of high quality colostrum is widely recognised as the single most important management factor in determining health and survival of the neonatal calf as well as reducing the risk for pre-weaning morbidity and mortality.

The newborn calf is reliant upon colostrum not only for the transfer of immunoglobulins (Ig) but also as a source of immune cells, cytokines and other non-specific immunologic substances which stimulate immune activity, as well as nutritional elements and growth factors. Immunoglobulins, or antibodies, are proteins that facilitate the identification and destruction of invading pathogens, providing the calf with passive immunity until its own immune system is established.

The effectiveness of passive immunity depends on the quality, volume and timing of colostrum intake. Following birth the ability of the calf’s gut to absorb the immunoglobulins rapidly decreases and around 24 h it is unable to absorb them at all (mean closure tim at approx 24 hours). It is therefore important to ensure colostrum is fed as soon as possible after birth. A critical mass of 100 to 200 g of immunoglobulin must be ingested by a newborn calf to acquire passive immunity.

Decreased colostral Ig absorption in the first 12 hours has been reported in calves that experience prolonged calvings. This is thought to be associated with a delay in these animals getting up to suck. Calves from difficult calvings should be identified as being at increased risk of failure of passive transfer and steps should be taken to ensure that they are given supplementary colostrum.

A refractometer

The quality of colostrum will vary from cow to cow. Whilst ensuring proper feeding and dry cow management is important to ensure good quality colostrum, a number of other factors will also influence colostrum quality. For instance, sick animals, such as those suffering from mastitis or milk fever, will produce poorer colostrum. Comparative studies have reported breed effects on colostrum quality. In one study, immunoglobulin concentration was greater in colostrum from beef cows (113.4 g/L) than in colostrum from dairy cows (42.7 g/L), such differences could be attributed to genetic differences and/or dilutional effects. Studies report a tendency for older cows to produce higher quality colostrum especially when compared to heifers and this should be factored in when formulating colostrum-feeding plans.

For some causes of calf scour (e.g. rotavirus, coronavirus and E.coli) vaccination of the cow prior to calving will stimulate increased levels of colostral antibodies against these pathogens, providing additional protection to the neonatal calf.

When collecting colostrum for feeding and for storage it is important to maintain a high standard of hygiene as colostrum provides a perfect medium for bacterial growth. Only store good quality colostrum. This can be tested on farm using a colostrometer or a refractometer (see text box). If colostrum is not going to be used within one hour of collection, it should be refrigerated or frozen. When freezing colostrum do so in dose-sized quantities so that it can be easily defrosted when required. Only colostrum from animals of known health status should be stored with care being taken to minimise the potential spread of infectious diseases, such as, Johne’s.

Monitoring

It is a good idea to have a program in place to routinely monitor colostrum management, and to ensure the effectiveness of colostrum feeding. When assessing colostrum feeding it is important to ensure that whatever system is in place is providing a sufficient QUANTITY of good QUALITY colostrum as QUICKLY as possible.

Quantity

Calves need a first feed of three to four litres of colostrum (10% of bodyweight) within two hours of birth, followed up by another similar sized feed within 12 hours of birth.
Quality
Good quality colostrum contains at least 50 g/L of antibody IgG. To measure the quality, use a colostrometer or refractometer.

Quickly
Aim for all calves to receive their first dose of colostrum within two hours of birth to optimise immunity.

There are a number of different laboratory-based test methods for directly measuring the effectiveness of colostrum feeding, and monitoring for failure of passive transfer (FPT), using blood samples collected from calves in the first week of life. Measurement of serum total solids (STS) using a hand-held refractometer offers a convenient, simple, rapid, and inexpensive tool for monitoring colostrum-feeding programmes at a herd-level. It is generally accepted that total solids of greater than 55 g/L indicate sufficient immunoglobulin absorption. It is recommended that serum samples be collected from a minimum of 12 clinically normal (not scouring) calves between 24 hours and seven days of age, with the overall result used to assess FPT status (Table 1).

<table>
<thead>
<tr>
<th>Number of Calves <55 g/l total serum protein (%)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/12 (0%)</td>
<td>FPT is not a herd problem</td>
</tr>
<tr>
<td>1/12 (8%)</td>
<td>FPT is not a herd problem</td>
</tr>
<tr>
<td>2/12 (17%)</td>
<td>Borderline concern for FPT</td>
</tr>
<tr>
<td>3/12 (25%)</td>
<td>Borderline concern for FPT</td>
</tr>
<tr>
<td>4/12 (33%)</td>
<td>FPT is a problem</td>
</tr>
<tr>
<td>5/12 (42%)</td>
<td>FPT is a problem</td>
</tr>
<tr>
<td>6/12 (50%)</td>
<td>FPT is a problem</td>
</tr>
</tbody>
</table>

TABLE 1: Interpretation criteria for serum total protein measurements for assessment of failure of passive transfer (FPT) in a group of 12 one-week-old calves.4

Good colostrum management is the cornerstone of successful calf-rearing. Through use of routine monitoring and proactive health planning veterinary surgeons can work with their clients to ensure their calves receive sufficient, good quality colostrum, and hopefully, reduce the incidence of calf disease.

Feeding the Young Calf
In a newborn calf some of the stomach’s compartments are relatively small and non-functioning (see diagram on rumen development). In neonatal calves, sucking stimulates the oesophageal groove, a muscular tube that contracts as a reflex during normal milk feeding. This directs milk into the abomasum, bypassing the rumen, reticulum and omasum. The abomasum has an acidic environment, which clots the milk so it can be digested in the small intestine. If feeding is rushed, or the calf is stressed, the reflex can fail and the milk will enter the rumen where it ferments, causing digestive upset and scouring. In adult animals food passes through the rumen, reticulum and omasum before entering the abomasum.

Milk Feeding:
There are many different systems for milk feeding and it is important that producers choose a system that works for them and provides sufficient nutrients to achieve specific goals for calf growth, health and weaning age. When choosing a system it is important to consider the advantages and disadvantages of each feed type...
Avoid letting milk stand for long periods at room temperature as bacterial growth will occur which can cause disease in calves.

Whole milk is typically a consistent product, however feeding milk that could otherwise be sold for processing typically has no economic advantage over feeding milk replacer. In addition to this, there is a risk of whole milk may contain pathogens. On-farm pasteurisation can be used to reduce bacterial load and the risk of disease transmission, but will not eliminate all microbes. If whole milk is used, avoid letting milk stand as this can cause disease in calves. Feeding waste milk that cannot be sold due to mastitis and/or antibiotic residues has a number of disadvantages and should be avoided:

- Variable consistency and poor quality
- Waste milk, particularly from cows with mastitis, is unsalable, and is frequently rejected by calves.
- Feeding milk containing antibiotic residues to calves can cause gut disturbances and scouring, and may also promote the emergence of antibiotic resistant bacteria.

Whichever method of feeding you choose hygiene is paramount. Milk should only be prepared and stored in clean containers and it’s important to clean feeding equipment between groups of calves and disinfect it after every feeding. This is especially important when faced with outbreaks of disease that can be rapidly spread between calves on feeding equipment. Whilst on milk it is essential that calves have access to clean water, and that solid starter feed is available from around three days of age.

Cold Weather Milk Replacer Feeding

Cold weather is stressful for calves and those that are exposed to the cold are predisposed to pneumonia. When calves are not fed adequately in cold temperatures they don’t grow as quickly since they are using their energy to keep warm instead. If calves are shivering after feeding it is a sign that they are cold and not being fed adequately. A good rule of thumb is to increase the amount of milk replacer by 2% for every degree the temperature falls below 10 °C.

Weaning

Good management around the time of weaning is key to maintaining good growth rates and ensuring that calf rearing is as economical as possible. Weaning is the stage of calf rearing when rumen development is sufficient to support the calf’s nutritional requirements through fermentation and digestion of dry feed. Failure to manage weaning well can result in a stall in growth rates and potentially contribute to outbreaks of disease.

When to wean will depend on the individual system - most producers wean at around 8 weeks of age. The exact timing of weaning should not be decided based solely on age, it is important to ensure that the calf is ready. A calf is typically considered ready to wean when it is consuming more than 1.5 kg of high quality dry starter feed per day. Avoid weaning animals at times of stress or if they are showing signs of disease, such as scour or pneumonia.

Disbudding/Dehorning

Disbudding/dehorning should take place as soon as the horn buds can be easily identified, within the first two months of life. At this stage the horn buds are not yet attached to the skull, consequently the procedure involves less tissue trauma and is less stressful. Leaving
the procedure until later in life means that the animals are larger and harder to work with and there is increased risk of infection and other complications.

The most common way of disbudding calves is using the cauterisation method (i.e. a heated disbudding iron), which is performed under local anaesthetic. Alongside the use of local anaesthetic at the site of disbudding, injecting the calves with a non-steroidal anti-inflammatory drug (NSAID) at the time of procedure can provide further pain relief and minimise the negative impact of the procedure on the calf’s performance.

BRD and Pneumonia

Bovine respiratory disease (BRD) remains an important disease of calves that leads to reduced weight gain and productivity, as well as incurring significant costs in terms of management, treatment and prevention. The disease is multi-factorial with numerous viruses (bovine herpesvirus 1, Bovine respiratory syncytial virus, BRSV; parainfluenza 3 virus, PI-3, and bovine viral diarrhoea virus, BVDV), BoHV-1 and bacteria (*Mannheimia haemolytica*, *Mycoplasma bovis*, *Pasteurella multocida*, *Histophilus somni*) being implicated. There is also increasing evidence that bovine coronavirus may play a role in BRD in both young calf rearing systems and in feedlot operations where infection has been associated with times of stress, e.g. animal movements.

Risk Factors for Calf Pneumonia

The risk factors for calf pneumonia are well documented. In young calves disease outbreaks are frequently associated with poor immunity from failure of passive transfer from colostrum. Other factors that can predispose to outbreaks of pneumonia include poor environment, management stress (e.g. weaning or transport), mixing animals from different sources and age groups, as well as deficiencies in nutrition.

Identification and Investigation of Disease

Effective treatment and control of respiratory disease is determined by rapid and accurate identification of disease. All too frequently there are delays in identifying animals requiring treatment or an acceptance of a low level of chronic disease within a group. Cattle are highly adept at concealing signs of sickness, thus subjective assessment of sick cattle is highly variable and the diagnosis of BRD based on clinical signs is often inaccurate. Studies in abattoirs have shown high incidence of lung lesions in animals with no history of being identified as having had, or being treated for, respiratory disease. In one study, 37% of animals with no recorded history of respiratory disease showed lung lesions at slaughter. Such levels of disease would have undoubtedly had an impact on performance. It is important to understand that effective treatment must begin with a commitment to accurate and early identification of sick animals.
Technology is beginning to be implemented as an aid in disease detection on farm, with pedometers, feed consumption detection systems and temperature monitoring devices all becoming more readily available and cost effective.

When considering diagnostic testing it is important to decide on the exact question and how the information it generates will be used before submitting any samples. The information gained from diagnostic investigations may have limited impact on the management of the outbreak at hand as the time-delay will frequently mean the required information is not available at the time the therapeutic decision is made, but if steps are to be taken to reduce the likelihood of future outbreaks in a particular system (e.g. through the use of vaccination) the results can be extremely useful.

To this end diagnostic test selection needs to be appropriate both to the disease being looked for and the animal being examined. Always sample animals that are both representative of the group affected and have exhibited representative clinical signs. The animals chosen for sampling should be in the early stages of disease; sampling the chronically affected calf with a history of repeated treatments will yield very little useful diagnostic information.

Treatment and Management

Given the large number of pathogens that have been implicated in calf pneumonia, treatment tends to be symptomatic with a broad-spectrum effect.

Antimicrobials are the main component of most treatment regimes and there is a wide selection of products available. The exact choice of antimicrobial is dependent upon a number of factors, including the vet’s previous experience on the farm and elsewhere, and reported susceptibility patterns. There are also a number of practical considerations, such as cost, ease and frequency of administration, potential carcass damage, and for some products, the issue of human safety that can impact on antimicrobial choice. The most important determinant of antimicrobial efficacy in treating pneumonia is rapidly attaining and maintaining an effective antimicrobial concentration at the site of infection, i.e. in the lower respiratory tract. NSAIDs are often employed alongside antimicrobials in the management of BRD to decrease the severity of clinical symptoms, increase appetite and decrease the lung damage associated with inflammation. The use of NSAIDs as an ancillary treatment for BRD results in a more rapid decrease in rectal temperature, and there is data to suggest that NSAIDs may decrease lung lesions at slaughter.

Prevention and Vaccination

It is important that once an outbreak is under control that changes are made to reduce the likelihood of future outbreaks. Make use of the available data on farm management practices and the disease processes to identify the farm specific risk factors. In combination with improvements in management practices, vaccination programmes can make up a key component of pneumonia control programmes on farm.

Vaccines are available against many of the most common bacterial and viral causes of calf pneumonia, and should be used prior to high-risk periods to minimise the risk of disease. Vaccination works by increasing the calves’ immunity so they are less likely to succumb to disease. It also reduces the amount of virus shed by calves, thereby reducing the disease challenge in the shed.

Vaccination programmes should be designed to take into account the circumstances on individual farms and should be based around knowledge of the risk factors and the circulating pathogens. It should be implemented at a group level, and it is important that all animals within the same airspace are vaccinated.

When looking at vaccine choices for young calves it is important to consider the potential impact of maternally derived antibodies on vaccine uptake, and time vaccination to take this into account.

Summary

Control of BRD requires a concerted effort on a number of fronts: an appropriate environment, good colostrum management, a strategic vaccination programme, and good nutrition and management. These are all components of a holistic management plan aimed at both preventing disease and reducing the severity of any BRD cases that do occur.

Scours

Neonatal calf diarrhoea caused by infectious agents remains one of the biggest issues in youngstock health, accounting for around 50% of all calf deaths and significant financial losses on both beef and dairy enterprises. Diarrhoea can result from a number of different infectious and non-infectious causes, and in the absence of diagnostic testing it is not possible to predict the specific cause based on clinical presentation alone. Testing faecal samples to identify the causative agent is, therefore important for long-term management strategies.
Rotavirus
Rotavirus was one of the first identified viral causes of diarrhoea, and has since been found throughout the world with species specific rotaviruses being identified as significant pathogens of children and most other mammals. Calves become infected after ingesting the virus from faecal contamination of the environment. After ingestion of the virus, the incubation period is approximately 24 hours, with resolution of diarrhoea in uncomplicated cases in two days. Clinical disease is typically seen in calves less than three weeks old, with a peak incidence at six days of age.

Coronavirus
There is a lot of overlap in the epidemiology and pathophysiology of coronavirus diarrhoea in calves with that caused by rotavirus. Following environmental contamination by other calves or older cattle the virus enters the calf by ingestion. Clinical signs begin approximately two days after infection, with diarrhoea being mainly caused by intestinal cell loss and malabsorption. Coronavirus typically affects calves with the first three weeks of life, with peak incidence occurring between seven and ten days of age.

Enterotoxigenic Escherichia coli (ETEC)
Epidemiologic studies of both beef and dairy calves have implicated Enterotoxigenic Escherichia coli (ETEC) as the major cause of neonatal diarrhoea occurring in the first four days of life. However, it rarely leads to diarrhoea in older calves or adult cattle. Immediately after birth, oral exposure to faecal coliforms leads to colonisation of the gut with the normal commensal flora, and these organisms continue to move caudally through the gastrointestinal tract with ingesta. If environmental contamination is high, ETEC organisms are ingested at this same time and are able to produce severe disease.

Coccidiosis
The disease is caused by a small protozoan parasite which has a 21 day life cycle. The disease can occur in housed stock or those out at pasture. Calves pick up eggs, called oocysts, by licking other calves, from dirty bedding, or by drinking and eating food contaminated with faeces. Eggs pass through the stomach into the small intestine where they mature, enter the large intestine and invade the lining of the gut wall, destroying healthy cells. More eggs are produced by the protozoa, which are then passed out in the dung. Oocysts are resistant to heat, cold and many disinfectants, so they can survive for months or years in the environment until they get ingested, ready to start the life cycle again. It has been suggested that all cattle kept under conventional conditions experience infection with Coccidia at some point in their lives. Estimations suggest that only 5% of infected animals show clinical signs of coccidiosis (anorexia, loss of weight, bloody diarrhoea), whilst the remaining 95% of infections are subclinical.9 The economic impact of the clinical disease is widely acknowledged9 but the negative effect of subclinical coccidiosis on feed conversion and growth is often overlooked even though it occurs more frequently.10 Control of coccidiosis is achieved from good hygiene and environmental management, along with the strategic use of anti-coccidial drugs.

Treatment
The leading cause of mortality in calves with scour is dehydration (see Table 2 next page) and electrolyte disturbance. It follows that the backbone of routine therapeutics should be fluid and electrolyte replacement appropriate to the specific clinical signs exhibited by an affected animal. Antimicrobials should be used only when there is a specific clinical indication.

Fluid therapy
Diarrhoea results in excessive faecal loss of electrolytes and fluid. Some pathogens will cause secretory diarrhoea, in which the small intestinal

Salmonella
There are a number of Salmonella serotypes that can cause diarrhoea in calves. In the UK the most commonly serotype is S. dublin. The disease usually occurs between two and six weeks after birth, and can vary widely in clinical presentations; ranging from septicaemia and high mortality, to mild disease that can almost go unnoticed.

Cryptosporidiosis
Cryptosporidium parvum is a small parasite and one of the most common gastrointestinal pathogens isolated from dairy calves. It is frequently identified alongside rotavirus in outbreaks of diarrhoea. Infection, as with all the other pathogens discussed so far, is by the faecal-oral route. Once in the host, the organism goes through a complex life cycle that involves multiple stages. Following infection, clinical signs typically peak at three to five days, and last from between 4 and 17 days. If Cryptosporidium is suspected faecal samples should be examined to confirm its presence and allow appropriate anti-parasitic medication to be administered.
Three mechanisms:
1. Providing a source of additional water and electrolytes
2. Improving absorption of electrolytes by providing agents such as glucose and amino acids to facilitate sodium absorption through co-transport mechanisms
3. Providing nutritional support.

Less important objectives of oral electrolyte therapy include:
1. The support of immune and enteric function
2. The reduction of the potential negative impact on growth rates

Oral electrolyte therapy can be administered either by a bottle fitted with a teat or by orogastric intubation. Absorption is slightly more rapid following suckling; however, orogastric intubation is frequently used because it is less time consuming. There are large numbers of oral electrolyte products currently available, and there is considerable variability in their constituent ingredients. Farmers should consult with their vet on which product is best to use on their farm and how much to give.

In cases of severe dehydration (greater than 8% dehydration) where the calf is exhibiting signs of severe depression, weakness, inability to stand and the suck reflex is absent, it may be necessary for a vet to administer fluids intravenously.

Use of NSAIDs
As diarrhoea can be accompanied by intestinal cramping and abdominal pain, the use of analgesics is indicated. NSAIDs decrease inflammation in the gastrointestinal tract and reduce the effects of the endotoxaemia and septicaemia.

Treatment of viral infections
There are no specific therapies for the treatment of viral infections and so treatment in cases of rotavirus and coronavirus should be based around supportive fluid therapy, as well as management of any secondary bacterial infections.

Prevention
As for any disease, prevention is better than cure and so to minimise the impact of scouring on any calf rearing unit it is important to take steps to prevent the disease.

Farm management practices
Irrespective of the identity of the causal agent, the route of infection is the same – ingestion or inhalation of the organism from an environment that is heavily contaminated by faeces. Thus hygiene and cleanliness are paramount, and along with good colostrum management, form feeding worsens diarrhoea and that treatment protocols should involve a period of “resting the gut” during which milk is withheld. However, research has shown that milk feeding does not worsen or prolong diarrhoea, nor does it slow down healing of the intestine11,12. The studies also showed that continuing to feed milk alongside electrolytes maintained growth and avoided the weight loss observed in calves limited to only electrolyte solutions.

In light of this it is prudent to use the limit of the use of antimicrobials to only systemically ill animals and select products with activity against E. coli and potentially Salmonella spp.

Antimicrobials
The use of antimicrobials in the treatment of calf diarrhoea is controversial. There are concerns that their use promotes antimicrobial resistance in both pathogenic and commensal bacteria. In a time where the use of antimicrobials by veterinarians is under scrutiny we should ensure that we use and prescribe them prudently. All calves with diarrhoea will exhibit some level of intestinal overgrowth of E. coli bacteria regardless of the inciting cause, and around 20-30% of scouring calves will develop a bacteraemia13,14.

Use of NSAIDs
As diarrhoea can be accompanied by intestinal cramping and abdominal pain, the use of analgesics is indicated. NSAIDs decrease inflammation in the gastrointestinal tract and reduce the effects of the endotoxaemia and septicaemia.

Treatment of viral infections
There are no specific therapies for the treatment of viral infections and so treatment in cases of rotavirus and coronavirus should be based around supportive fluid therapy, as well as management of any secondary bacterial infections.

Prevention
As for any disease, prevention is better than cure and so to minimise the impact of scouring on any calf rearing unit it is important to take steps to prevent the disease.

Farm management practices
Irrespective of the identity of the causal agent, the route of infection is the same – ingestion or inhalation of the organism from an environment that is heavily contaminated by faeces. Thus hygiene and cleanliness are paramount, and along with good colostrum management, form feeding worsens diarrhoea and that treatment protocols should involve a period of “resting the gut” during which milk is withheld. However, research has shown that milk feeding does not worsen or prolong diarrhoea, nor does it slow down healing of the intestine11,12. The studies also showed that continuing to feed milk alongside electrolytes maintained growth and avoided the weight loss observed in calves limited to only electrolyte solutions.

In light of this it is prudent to use the limit of the use of antimicrobials to only systemically ill animals and select products with activity against E. coli and potentially Salmonella spp.

Antimicrobials
The use of antimicrobials in the treatment of calf diarrhoea is controversial. There are concerns that their use promotes antimicrobial resistance in both pathogenic and commensal bacteria. In a time where the use of antimicrobials by veterinarians is under scrutiny we should ensure that we use and prescribe them prudently. All calves with diarrhoea will exhibit some level of intestinal overgrowth of E. coli bacteria regardless of the inciting cause, and around 20-30% of scouring calves will develop a bacteraemia13,14.

In light of this it is prudent to use the limit of the use of antimicrobials to only systemically ill animals and select products with activity against E. coli and potentially Salmonella spp.

Use of NSAIDs
As diarrhoea can be accompanied by intestinal cramping and abdominal pain, the use of analgesics is indicated. NSAIDs decrease inflammation in the gastrointestinal tract and reduce the effects of the endotoxaemia and septicaemia.

Treatment of viral infections
There are no specific therapies for the treatment of viral infections and so treatment in cases of rotavirus and coronavirus should be based around supportive fluid therapy, as well as management of any secondary bacterial infections.

Prevention
As for any disease, prevention is better than cure and so to minimise the impact of scouring on any calf rearing unit it is important to take steps to prevent the disease.

Farm management practices
Irrespective of the identity of the causal agent, the route of infection is the same – ingestion or inhalation of the organism from an environment that is heavily contaminated by faeces. Thus hygiene and cleanliness are paramount, and along with good colostrum management, form feeding worsens diarrhoea and that treatment protocols should involve a period of “resting the gut” during which milk is withheld. However, research has shown that milk feeding does not worsen or prolong diarrhoea, nor does it slow down healing of the intestine11,12. The studies also showed that continuing to feed milk alongside electrolytes maintained growth and avoided the weight loss observed in calves limited to only electrolyte solutions.

In light of this it is prudent to use the limit of the use of antimicrobials to only systemically ill animals and select products with activity against E. coli and potentially Salmonella spp.

Antimicrobials
The use of antimicrobials in the treatment of calf diarrhoea is controversial. There are concerns that their use promotes antimicrobial resistance in both pathogenic and commensal bacteria. In a time where the use of antimicrobials by veterinarians is under scrutiny we should ensure that we use and prescribe them prudently. All calves with diarrhoea will exhibit some level of intestinal overgrowth of E. coli bacteria regardless of the inciting cause, and around 20-30% of scouring calves will develop a bacteraemia13,14.

In light of this it is prudent to use the limit of the use of antimicrobials to only systemically ill animals and select products with activity against E. coli and potentially Salmonella spp.

Use of NSAIDs
As diarrhoea can be accompanied by intestinal cramping and abdominal pain, the use of analgesics is indicated. NSAIDs decrease inflammation in the gastrointestinal tract and reduce the effects of the endotoxaemia and septicaemia.

Treatment of viral infections
There are no specific therapies for the treatment of viral infections and so treatment in cases of rotavirus and coronavirus should be based around supportive fluid therapy, as well as management of any secondary bacterial infections.

Prevention
As for any disease, prevention is better than cure and so to minimise the impact of scouring on any calf rearing unit it is important to take steps to prevent the disease.

Farm management practices
Irrespective of the identity of the causal agent, the route of infection is the same – ingestion or inhalation of the organism from an environment that is heavily contaminated by faeces. Thus hygiene and cleanliness are paramount, and along with good colostrum management, form
Products

Bovalto® Respi 3 & 4
A CONVENIENT AND RELIABLE BRD VACCINATION PROGRAM
For active immunisation of cattle in the absence of maternally derived antibodies against parainfluenza 3 virus, bovine respiratory syncytial virus and *Mannheimia haemolytica* serotype A1. Bovalto Respi 4 is also indicated to reduce virus excretion due to infection with bovine viral diarrhoea virus.
- Targets the key respiratory pathogens in a single vial
- Ready-to-use for practical handling
- Small injection volume to reduce discomfort to calves
- Use from 2 weeks of age*14
- Rapid onset of immunity - 3 weeks post - primary course15
- 6 months’ continuous protection14

Bovalto® Respi Intranasal
RELEASE THE FULL POWER OF MUCOSAL IMMUNITY
For the active immunisation of calves from the age of 10 days against bovine respiratory syncytial virus (BRSV) and bovine parainfluenza 3 virus (PI3V).
- Efficacious in the presence of maternal antibodies
- Early vaccination from 10 days of age
- Immunity during critical periods
- Antigens with proven efficacy against recent isolates14
- Unique vaccination experience

Bovalto® Pastobov
For active immunisation of cattle to reduce clinical signs and lesions of *Mannheimia haemolytica* A1 induced respiratory disease.
First injection: At the minimum age of 4 weeks.
Second injection: 21-28 days later.

Metacam®
Cattle: For use in acute respiratory infection with appropriate antibiotic therapy to reduce clinical signs in cattle. For use in diarrhoea, in combination with oral rehydration therapy, to reduce clinical signs in calves of over one week of age and young non-lactating cattle. For adjunctive therapy in the treatment of acute mastitis, in combination with antibiotic therapy.

Diakur® Plus
Nutritional supplement to re-hydrate young calves suffering from digestive disturbance, or that are under stress caused by changes in feed or the environment. A unique formula containing hydrophobic citrus fibre which supports the elimination of pathogenic bacteria from the intestinal tract. Supports fast absorption of electrolytes and water, and can be fed with milk, milk replacer or water.

Locatim®
An oral treatment for neonatal calves less than 12 hours of age, of concentrated lactoserum that contains high levels of IgG against *E.coli* K99. All doses are concentrated and standardised to produce reliable levels of stated immunoglobulins. For the reduction of mortality, caused by enterotoxosis associated with *E.coli* F5.

Summary
Calf diarrhoea is a multi-factorial disease and the rapid implementation of appropriate therapy is essential for a rapid recovery. The economic impact of this disease can be reduced through the rapid management of outbreaks, and the implementation of good husbandry practices and appropriate control measures.

Use of vaccination
Vaccination can also be a key tool to help prevent calf scours with vaccines available for some of the most common diarrhoea pathogens (rotavirus, coronavirus and *E.coli*). Given to the dam prior to calving, the vaccines will increase the circulating antibodies in cows and heifers. Shortly before calving these antibodies will accumulate in thecolostrum allowing them to be passed onto the newborn calf. The protection offered by these antibodies is twofold:
1. In the first 24 hours of life the antibodies are absorbed by the calf (passive immunity)
2. After 24 hours the antibodies in the colostrum will coat the surface of the intestine and have a local protective effect

Oral antibody supplements can also boost passive immunity against specific scour pathogens when administered soon after birth.

References

1. Bush and Staley (1980) IDS. Absorption of Colostral Immunoglobulins in Newborn Calves

Diakur® Plus is a nutraceutical (non-medicinal product). Locatin* is a registered trademark of Biokema. Bovalto® are registered trademarks of the Boehringer Ingelheim Group. Diakur® and Metacam® are registered trademarks of Boehringer Ingelheim Vetmedica GmbH, used under licence. ©2019 Boehringer Ingelheim Animal Health UK Ltd. All rights reserved. Date of preparation: Aug 2019. AHD12188.

*Use from 2 weeks of age in calves from non-immune dams.